
Predicting Video Game Popularity With Tweets

Casey Cabrales (caseycab), Helen Fang (hfang9)

December 10,2015

Task Definition

Given a set of Twitter tweets from a given day, we want to determine the peak
number of people that are playing a video game that day. When blockbuster
games are released, thousands of people on twitter are talking about it by post-
ing impressions, pictures, and videos. The excitement for the release is also
shown in the number of users playing that video game. But as the release date
drifts further away, tweet volume and sentiment die down as people finish the
main story or stop playing altogether for one reason or another. So our goal
with this project is to predict the correlation between features of tweets about
a certain video game and the number of players who played it that day and
moving forward.

Our system takes as input a database of tweets separated by game, including
Grand Theft Auto V (2574), Counter Strike: Global Offensive (3495), Skyrim
(1201), Rocket League (556), The Witcher 3 (165), and Trove (506). We chose
these games for multiple reasons: time distance from release (Skyrim), major
events occurring about the game (Counter Strike), extremely popular games
(GTA), mid-tier release games (Witcher 3), and smaller indie games (Trove).
These are filtered from Tweets from the months of July and August of 2015.
As output, the system returns the predicted peak players on that day based on
Tweet features which are then compared to actual Steam player data for the
days of those months to measure our accuracy. We display a summary of these
results for each game as well as error analysis statistics.

In order to evaluate our system, we are comparing the number output by
our model to the number of people that played according to the data we found
from Steam. This constitutes the error from the hard data points over each day
of the two months.

The information output can be useful for both the developer and player-
base (as well as interested consumers). Developers can track what influences
player trends for their game, whether it be esports competitions, DLC releases,
or bad updates. These trends can influence when they decide to release new
content so that on the downturn of players, they can get the number back up
where they want it. The player-base can use these predictions to gauge whether
online play will be competitive, or judge how popular the game is at a given

1

time. Executives can use this information to make key marketing decisions. The
twitter data should be able to predict the player trends of a video game into
the future based on existing data.

Infrastructure

This section will outline the type of data we used, as well as go into more
depth about how we acquired and processed it to meet our needs. Our data
is made up of Tweets from a given day and game. We downloaded archived,
raw, unprocessed Tweet data for the months of July and August, 2015 from
archive.org. It was in no way filtered or marked, and was simply the raw tweets
themselves with the metadata provided by Twitter. Because the Twitter API
doesn’t allow us to stream Tweets from far enough back in time, we had to use
this resource which contained JSON grabs each day from the ’Spritzer’ version
of the Twitter stream. In total, it contained about 900GB of Tweets over the
entire two months. We also began to download and archive our own tweets for
the end of November, but decided that the more complete months would be
more useful to the final result over more scattered data.

Once we had this data, we filtered it by crawling through the entire file
structure and using regexes to look for occurrences of the different hashtags for
our selected games (ignoring deleted Tweets). If we found one, we would save
it to the respective output file for that game. We did not separate the data into
two train/test files so that we could implement K-folding.

After parsing the data into one large file, we could use that to perform
sentiment analysis and extract features for each game from each day. This
portion was accomplished on a game-by-game basis, by viewing each tweet one
at a time and creating the feature vectors (addressed later in this document).

On top of obtaining Tweets, we also had to find and format player counts for
each day, for each game, in both July and August. This data was collected from
SteamDB, which collects a variety of different statistics for each game. We were
only interested in the player data, though. We recorded this information and
placed into a JSON file separated by game, containing the game name, release
date, and peak player dictionary for each day of July and August. This data is
used for determining accuracy of our model and being able to train it well with
the model.

In order to implement sentiment analysis, we also downloaded the Stanford
Twitter sentiment corpus (http://help.sentiment140.com)4, which consists
of a training set of of 1.6 million tweets labelled based on emoticons (”4” being
positive, ”2” being neutral, and ”0” being negative). While labelling tweets
based on the presence of emoticons seems very cursory, this was the best and
largest available labelled dataset that wasn’t pigeoned to Tweets of non-game
related topics. If we were given more time, we potentially would have explored
hand-labeling tweets.

2

Approach & Error Analysis

The major challenges of building the system were data collection and determin-
ing useful features. With regards to data collection, it is difficult to get Tweet
archives because of Twitter’s terms of use. In addition, we can only use the API
to download Tweets from the past two weeks, which is too short of a time span
to glean any meaningful information from the dataset. So after spending a great
deal of time searching for places to get unaltered Tweets, we finally found the
archived data sets that we are using now. The second challenge of determining
useful features also directly relates to identifying and capturing the phenomena
in the data. Our goal was to determine how many people would play a game on
a given day based on the Tweets about that game, so we needed to select fea-
tures that were both general and useful enough to predict for all games. Having
the metadata associated with each Tweet made this task a little easier, but it
was still important to tune the features for the best possible results.

In order to predict the peak number of players per day for a given game based
on a collection of tweets, we first looked at different pure regression models. In
the preliminary phase of development, we looked at using linear regression.

Linear regression models the relationship between some input variable X
with an output variable Y (also referred to as the response) such that:
fw(x) = w·φ(x), where w represents the weights (or coefficients of the respective
feature). It is simple to implement and does a good job at approximating the
models. However, regression depends heavily on the features we come up with,
which could greatly alter any results we get with different feature combinations.
For our baseline, we use a simple linear regression, where the input variable X
represents a single feature - the number of tweets of the game per day. From
there we then looked at multivariate linear regression, where the input variable
X represents multiple features.

Number of tweets 50
Number of users 45
Avg Favorites 0.0
Avg Followers 124.11
Avg Retweets 0.0

V alue = 46956
From the data we extracted, we decided to use features such as the number of

tweets on the game, number of users tweeting about the game, average number
of followers of users tweeting about the game, average number of favorites of
these tweets, and the average number of retweets amongst these tweets (above is
an example feature vector from GTAV). Taking these features from the training
data, and their corresponding peak number of players, we proceed to ”fit” the
data into the model by using least squares.

With least squares, we want to find the w (weight) that minimizes the ob-
jective function:
TrainLoss(w) = 1

|Dtrain|
∑·

(x,y)εDtrain
(w · φ(x)− y)2

3

In order to determine the value of w, we perform a stochastic gradient descent
on the TrainLoss objective function using the training data (features and val-
ues) such that for each training data, we tune w until it converges as follows:

w ← w − η5w TrainLoss(w)

After running the entire training set for a given game through stochastic
gradient descent, we take the learned value of w and evaluate it on the test set.
The learned w will give us a predicted value which we then compare to the true
value.

To illustrate the process, we use the elements from the training data (am ex-
ample is shown above) to find w. For Trove, we have [3.98411785e+01, 2.10001403e−
14, 1.24102394e+ 03, 6.05673308e+ 02, 4.43222834e+ 01].

In our test set, we have a data point with the feature [6, 28, 0.0, 394.85714285714283, 0.0].
Using our linear regression model fw(x) = w ·φ(x), where x is the feature vector
and w is the weights, we estimate that the peak number of players for that day
is 239437.801381, which is quite close to the true value of 24941.

In addition to a simple linear regression, we also implemented sentiment
analysis to draw more meaningful features about the content of the tweets.
In particular, the feature we developed is the ratio of positive tweets to total
number of tweets. However, in order to label the tweets in our training and test
sets with the appropriate sentiment, we developed and trained a classifier using
the NLTK library.

In implementing sentiment analysis, we trained our classifier on the Stanford
Twitter Sentiment dataset by doing the following:

• Extract word features from our tweets (all space separated words in lower
case form with hashtags eliminated)

• Apply features to our Naive Bayes classifier

• Train the classifier with our labelled training sets

The Naive Bayes classifier which our nltk function is based on is a probabilis-
tic classifier based on using Bayes theorem and assuming independence between
the features. Essentially in labelling each tweet, the classifier is labelling it by
selecting the class (positive, neutral, negative) that maximizes:
ŷ = argmaxkε{1,...K}p(Ck)

∏n
i=1 p(xi|Ck)

where ŷ and Ck are the class and x are the features.
Initial Approach Our initial approach as we iterated through the project

involved splitting Tweets (only from August) into two data sets by date: Tweets
made August 1-10 were treated as the training set, while Tweets through the
end of August were used as the test set. However, we soon realized that our
results were being skewed by the presence of abnormal events or other such
occurrences between the training and test set dates.

Revised Approach In the final iteration of this project, we decided to
implement K-folding. Overall our data set isn’t very large, so to make up

4

for this the different combinations of K-folding make up for it. This method
generalizes better to the dataset at hand than a 70-30 split for training and test
sets. In addition, it combines measures of fit to correct for training error and
derive a more accurate estimate of model prediction performance.

Baseline For our baseline, we use a simple linear regression with a single
feature - the number of tweets of the game per day. It seems reasonable to con-
clude that games with a large active player base are more likely to get tweeted
about that those with a smaller active player base. Using our initial approach of
splitting the data two ways, with the training set as the set of daily tweets from
August 1, 2015 to August 10, 2015 and the test set as the set of daily tweets
from August 11, 2015 to August 31, 2015. We obtained the following results:

Game Average Percent Error
CounterStrike 62.8117
GTA V 46.4884
Witcher3 1.8304
Skyrim 5.7772
Trove 8.9124
RocketLeague 6.7847

Using the K-folding technique described above this time with the baseline, we
obtain the following results:

Game Average Percent Error
CounterStrike 45.2570
GTA V 62.5597
Witcher3 2.0928
Skyrim 8.8263
Trove 659.8729
RocketLeague 2468.0833

Trove and Rocket League see a spike in error, which is likely due to their very
recent mid-July release, which may display much more exponentially decaying
figures compared to more mature games.
Oracle Our oracle essentially ”cheats” and peeks at the actual peak number of
players for a given game on a given day based on data provided by SteamSpy.

Multivariate Linear Classification Given a set of daily tweets, there
are other features beyond the number of tweets about the video game that are
important in determining the number of people playing a game. We enhanced
our linear regression model to also include these features, based on the idea
that how influential a twitter user is and how well-received the tweet is could
indicate how many people play the game:

• Number of users tweeting about the game (Not necessarily equal to the
number of tweets on the subject)

• Average number of favorites of tweets

• Average number of followers of the users tweeting about the game

5

• Average number of times gaming tweets are retweeted

Using the same training and test sets described in our baseline, we obtained
the following results:
Game Average Percent Error
CounterStrike 99.575
GTA V 1.20733
Witcher3 5.9382
Skyrim 90.821
Trove 1.1351
RocketLeague 1.2864

It is unclear whether or not multivariable linear regression outperforms our
baseline regression. Games like Counterstrike and Skyrim suffer from extreme
error, while other games showed a reduction in error. There are many factors
that account for this variability including overfitting of data. From examining
the data more closely, games like Skyrim have unusual player patterns in that
peak number of players mapped over time looks like a sinusoidal curve; it is
possible that this has to do with gameplay and may not be best expressed
through linear regression. In addition, our data is sparse in that our training
set only covers 10 days. With more data covering a more extensive period of
time, it is possible that there would be less overfitting and the linear regression
model could perform better.

Results With K-Folding
Game Average Percent Error
CounterStrike 1.0406
GTA V 1.0442
Witcher3 1.6920
Skyrim 0.9405
Trove 1785.7114
RocketLeague 10.0558

It is apparent that using K-Folding outperforms the traditional split of train-
ing and test data. Counter Strike error is completely reduced, because of how
we eliminate bias from the World Championship beginning and skewing the
data for that time period. Games with smaller Tweet datasets also saw some
improvement from our algorithm being able to get a better feel for the data
itself. However, because the release dates of Trove and Rocket League were
toward the beginning of July, their errors are affected and can lead to extrane-
ous prediction results on the days prior to release. By using K-Folding we help
prevent overfitting to the data at hand.

Final Results of Linear Regression with K-Folding and Sentiment
Analysis (ratio of positive tweets to total tweets)

6

Game Average Percent Error
CounterStrike 0.3547
GTA V 0.9393
Witcher3 1.0318
Skyrim 1.0003
Trove 45.6576
RocketLeague 1390.2450

The final step in our process was the addition of sentiment analysis to help
predict number of players. This feature gave some dimension to the data at
hand by telling us what the people are thinking when they post their Tweets.
So the games with larger datasets definitely get more accurate because of this
method. However, sentiment of the smaller games affect the result a lot more
and can get skewed more easily, so the average error is slightly increased. It
also appears that games with release dates during the time of our data are still
negatively affected. Additionally, the labelled training set we used to train our
Naive Bayes Classifier may not have been the most optimal because the 1.6
million tweets were labelled based on emoticons (which are the not the best
indicators for sentiment) and these tweets came from a wide variety of sources.
For future evaluation, we would explore hand labelling gaming tweets because
the vocabulary used and the nature of gaming tweets differs from the larger
community.

Extending Features

In addition to our existing set of features, we extended these features to see
if there are non-linearities in the features. And if so, would these extensions
improve results?

After experimenting with some combinations, it is unclear whether or not
these extensions would improve the results of our regression model. Often in
times, the average percent error from the games Trove and Rocket League would
swap in having egregiously large errors or the other games would experience
slight increases or decreases in error. For example, when we added the feature
numTweets2, it appears that for games like Rocket League, tweets and players
are more quadratically related:

Game Average Percent Error
CounterStrike 1.002
GTA V 1.003
Witcher3 0.825
Skyrim 1.491
Trove 153.318
RocketLeague 54.677

We also experimented further. It intuitively makes sense that the average
number of favorites on a tweet is related to the average number of followers. We
tried the cross term followAvg ∗ favAvg and yielded the following results:

7

Game Average Percent Error
CounterStrike 1.0019
GTA V 1.0010
Witcher3 0.6579
Skyrim 1.3948
Trove 306.0377
RocketLeague 2.7019

Overall this term yields better results in that RocketLeague’s error decreased
dramatically but most other games increased in error. It is likely that there is
a significant relationship between the number of followers and the number of
favorites that is displayed in RocketLeague’s tweets, but much less so in Trove.

Literature Review

We did not find another system that also tried to predict player population for a
game on a given day using Tweets. However, there is a report that investigates
using Twitter to predict the stock market titled ”Twitter Mood Predicts the
Stock Market.”2 This report is similar to what we are trying to do with video
game prediction, and while not exactly the same, is comparable and comple-
mentary to our work.

Similar to our implementation, Tweets are analyzed by their text through
sentiment analysis on a given day to assess positive or negative public mood.
This provides a dimension for evaluating the relationship between number of
Tweets and what their meanings actually were. We also read in the stock
market prediction report that they used K-folding cross-validation to better
improve upon the accuracy of the sentiment. So we also decided to implement
this, as it was a way for accounting for extraneous events that may have skewed
the results otherwise. Whereas they accounted for major holidays and Election
Day, for example, we accounted for E-Sports events and launch days of video
games. This technique ended up drastically reducing the overall error for our
games by mirroring their tactics.

However, there are some important differences. The mentioned report only
utilizes sentiment analysis for their prediction, with 7 mood dimensions gener-
ated from two different tools. Our prediction of player populations is a com-
bination of a regression model and sentiment analysis so that we can best fit
the relationship of the pieces of data and generate the best possible prediction.
They do mention that a single dimension may ignore the multi-dimensional
structure of human mood, but in order to compensate for that in our study we
applied regression with additional features instead of adding additional mood
dimensions. This helped to take a holistic approach of the data.

References

1. Internet Archive Search Tweets

8

http://archive.org/search.php?query=collection%3Atwitterstream&sort=-publicdate

2. Bollen, J., Mao, H. and Zeng, X.-J. 2010. Twitter mood predicts the stock
market. Journal of Computational Science 2(1):1-8.

3. Luce, Laurent. 2 Jan. 2012. ”Twitter Sentiment Analysis Using Python
and NLTK.Laurent Luce’s Blog

4. Stanford Twitter Sentiment Sentiment140

9

http://www.laurentluce.com/posts/twitter-sentiment-analysis-using-python-and-nltk/
http://help.sentiment140.com

